Assimilation of AIRS CO₂ Observations with EnKF in a Carbon-Climate Model

Junjie Liu, Inez Fung (UCB)
Eugenia Kalnay, Ji-Sun Kang (UMD)
Mous Chahine, Ed Olsen, Luke Chen (JPL)

Different CO₂ vertical gradient forecasts give different CO₂ flux

- Numbers and characters are different transport models.
- => Important to have accurate vertical mixing in the model;
- => Accurate 4-D (x, y, z, t) CO₂ fields.

Meteorology fields & CO₂

- Offline transport models have been used.
- The initialization meteorology fields are from either reanalysis products (usually 6-hourly) or off-line dynamical model;
- The vertical mixing has large uncertainty;
- Single realization of meteorological field.

Research Goals

Generate 6-hourly 3-D (x, y, z) CO₂ fields by assimilating
 CO₂ and meteorological observations with full GCM

Carbon-Climate Model

- CO₂ is transported as a tracer;
- Vertical mixing is updated every 30 minutes;
- Land carbon flux: 6-hourly flux from biogeochemical model.5

Ensemble Kalman Filter (EnKF) process

- Forecast error changes with time;
- Obtain ensemble analyses.

CO₂ Observation Operator

- Model forecast x^b is CO₂ vertical profile;
- AIRS CO₂ is column-weighted Volume Mixing Ratio (vmr);

=> observation operator: interpolate x^b to obs location & calculate model forecast column-weighted CO₂ vmr.

$$\mathbf{y}^b = \mathbf{A}^T (\mathbf{S} (\mathbf{x}^b))$$
model forecast "obs" avg kernel spatial interpolator obs operator

Assimilation experiments

- Met-run: assimilate raw meteorological observations (10⁶ observations)
- AIRS-run: assimilate AIRS CO₂ observations in conjunction with meteorological observations.

The impact of AIRS CO₂ assimilation on 6-hourly CO₂ 3D (x, y, z) fields

- AIRS-run: AIRS CO₂+met obs; Met-run: only met obs.
- The year of 2003.
- Prescribed surface CO₂ flux forcing.

More than 2000 AIRS CO₂ within 6 hours; more sensitive in the middle troposphere

■ Averaging kernel: the sensitivity of AIRS CO₂ to CO₂ at each vertical level.

Analysis corrections to CO₂ forecast peak at the similar levels as the peak of the averaging kernels

■ No CO₂ observations beyond 60°S.

Assimilating CO₂ adjusts CO₂ vertical gradient

May 2003: CO₂(850hPa)-CO₂(400hPa)

- In the NH, CO₂(850hPa)>CO₂(400hPa): fossil fuel+ land carbon source;
- In the SH, CO₂(850hPa)<CO₂(400hPa): transported from the NH.

Assimilating CO₂ adjusts CO₂ vertical gradient

May 2003: CO₂(850hPa)-CO₂(400hPa)

- In the NH, CO₂(850hPa)>CO₂(400hPa): fossil fuel+ land carbon source;
- In the SH, CO₂(850hPa)<CO₂(400hPa): transported from the NH.
- Require CO₂ obs in the lower troposphere to further constrain gradient.

Inconsistent spatial distribution between AIRS CO₂ and ocean-air CO₂ flux

Ocean-atmosphere CO₂ flux (unit: 10⁻⁹kgC/m²/s Takahashi et al., 2002)

Tropical AIRS CO₂ relates to circulation and averaging kernel

Ocean-atmosphere CO₂ flux (unit: 10⁻⁹kgC/m²/s Takahashi et al., 2002)

Assimilating AIRS CO₂ improves spatial pattern

Consistent CO₂ distribution and weather pattern

500hPa geopotential height (contour) and CO₂ from AIRS-run (shaded)

Simultaneous assimilation of meteorology variables and CO₂
 generates CO₂ distribution consistent with weather pattern

CO₂ analysis spread ranges from 0.4ppm to 2ppm at 400hPa

400hPa monthly mean (September) CO₂ spread

Average num of CO₂ observations at each grid box within 6 hours

- Analysis ensemble spread is related to observation coverage, forecast error and observation error;
- Larger spread over high latitudes, and over land;
- Smaller spread over tropical ocean is due to observation coverage and propagation through forecast.

Column-integrated CO₂—Sep

Column-integrated CO₂—Oct

Column-integrated CO₂—Nov

Assimilating AIRS CO₂ improves surface CO₂ seasonal cycle and the N-S gradient

Surface obs: black; Met-run: red: AIRS-run: blue

Mean NH CO2 concentration at 8 surface stations

The N-S gradient based on 16 surface stations

Met-run has similar NH CO2 concentration and the N-S gradient

NOAA/ESRL website

Assimilating AIRS CO₂ improves CO₂ state estimate

Verified against independent aircraft CO₂ observations

■ CO₂ from the AIRS-run can be about 1 ppm more accurate than those from the met-run.

Preliminary results on surface carbon flux estimation by assimilating AIRS CO2

The impact of AIRS CO₂ assimilation on surface CO₂ flux

LETKF: Local Ensemble Transform Kalman Filter (Hunt et al., 2007)

- The carbon flux analysis acts as boundary forcing for the forecast of next time step.
- Four and a half months assimilation cycles (01Jan2003-10May2003).

- AIRS has the most impact over the tropical land
- Stronger source in the NH winter
- Stronger sink in the tropics and SH subtropics
- Noisy over ocean compared to Takahashi

February 2003

- Stronger source in the NH winter
- Stronger sink in the tropics and SH subtropics
- Noisy over ocean compared to Takahashi

March 2003

Little change

April 2003

Little change

May 2003

 As in the OSSEs, the surface fluxes appear initially to be reasonable and then they "get stuck".

Monthly average AIRS CO₂ does not change much over the tropical land from January to May

Conclusions - General

- EnKF brings important advantages for Reanalysis:
 - ✓ Analysis uncertainty
 - ✓ Adaptation to new observing systems
 - ✓ Estimation of obs. errors and identification of bad observations (not shown)
 - ✓ Estimation of model bias (essential)
- For Carbon Reanalysis it is essential to assimilate at the same time meteorological and carbon observations

Conclusions - Simulations (OSSEs)

- The advantage of the OSSEs is that we know the true fluxes and CO2
- It is possible to estimate surface carbon fluxes from atmospheric CO2 measurements but
 - ✓ Need "variable localization" to reduce sampling errors
 - ✓ Need adaptive inflation of the B error covariance
 - ✓ Need to estimate model bias
- Problem: the initial results after spinup from random fields are good, but then the surface fluxes "don't want to change anymore".
 - ✓ This is probably due to model bias

Conclusions - AIRS data assimilation

- AIRS CO2 data assimilation is clearly successful!
 - ✓ Improved atmospheric CO2 and N-S gradient
 - ✓ Better agreement with independent observations
 - ✓ Insight about vertical circulation and mixing
- Preliminary estimations of carbon fluxes are very promising after one month spin-up:
 - ✓ Compared with CASA fluxes they yield reasonable uptakes in the SH summer and stronger emissions in the NH winter
 - ✓ But, like in the OSSEs, the fluxes "don't want to change" with season

Conclusions - AIRS/IASI GoSAT/OCO2

- The combination of satellite and in situ data is important:
 - ✓ Results are more accurate in NH than in SH
- We need more near surface information
 - ✓ Carbon fluxes can be derived from atmospheric CO2
- Results depend on optimal forecast spread, a difficult problem for surface fluxes:
 - ✓ Work on estimating model bias
 - ✓ Should find why after initial good surface fluxes they
 "don't want to change" with season
 - ✓ We probably need to estimate diurnal and seasonal changes with a different approach (e.g., EOFs). ³⁵